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Abstract— Functional magnetic resonance imaging
(fMRI) provides a window on the human brain at work.
Spontaneous brain activity measured during resting-state
has already provided many insights into brain function.
In particular, recent interest in dynamic interactions
between brain regions has increased the need for more
advanced modeling tools. Here, we deploy a recent
fMRI deconvolution technique to express resting-state
temporal fluctuations as a combination of large-scale
functional network activity profiles. Then, building upon
a novel sparse coupled hidden Markov model (SCHMM)
framework, we parameterised their temporal evolution as
a mix between intrinsic dynamics, and a restricted set of
cross-network modulatory couplings extracted in data-
driven manner. We demonstrate and validate the method
on simulated data, for which we observed that the SCHMM
could accurately estimate network dynamics, revealing
more precise insights about direct network-to-network
modulatory influences than with conventional correlational
methods. On experimental resting-state fMRI data, we
unraveled a set of reproducible cross-network couplings
across two independent datasets. Our framework opens
new perspectives for capturing complex temporal dynamics
and their changes in health and disease.

Index Terms— Dynamic functional connectivity, total acti-
vation, innovation-driven co-activation patterns, sparse
coupled hidden Markov model, �1 regularisation.

I. INTRODUCTION

SPONTANEOUS brain activity can be measured non-
invasively in human volunteers using resting-state (RS)

functional magnetic resonance imaging (fMRI). The study
of RS functional connectivity (FC)—statistical inter-
dependencies between brain regions’ activity traces—has
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shown great potential in refining our understanding of
human cognition [1] and in increasing our knowledge of the
alterations caused by brain disease and disorder [2], [3]. This
was in large part contributed by the discovery of a repertoire
of large-scale functional networks [4]–[6], commonly termed
resting-state networks (RSNs).

Conventional FC is measured as pairwise correlation
between complete time courses of several minutes. Multiple
time samples are thus required to generate a FC estimate,
leading to an intrinsically assumed “stationarity” of func-
tional relationships. This view has, however, recently been
challenged by new methods that characterise time-dependent
FC changes reflecting moment-to-moment reorganization of
functional networks [7]. Therefore, dynamic functional con-
nectivity (dFC) has emerged as a new research direction with
important methodological developments.

In the majority of existing dFC works, changes in regional
interactions are tracked through successive connectivity mea-
sures on overlapping temporal windows (sliding window
framework). To extract an informative, limited subset of con-
nectivity states, hard clustering [8]–[10] or subspace decom-
position methods [11]–[13] are subsequently applied. Other
attempts rely on frame-wise dFC analysis, without resorting
to second-order connectivity measurements; amongst the main
such efforts, temporal independent component analysis [14]
and co-activation pattern analysis [15], [16] both stand out by
their ability to reveal meaningful maps of brain activity. For
more details on the wide landscape of available dFC tools, the
reader is referred to [17] and [18].

An alternative approach is to incorporate knowledge about
the hemodynamic response to better take into account
neurological meaningful signal. For instance, Caballero
Gaudes et al. [19] have proposed to retrieve event-related
responses without timing information using regularisation
strategies on deconvolved blood oxygenation level-dependent
(BOLD) time courses. Along the same methodological line,
deconvolution can also be performed based on a generalized
total variation regularisation criterion, termed total activa-
tion (TA) [20]. For each brain voxel, this processing pipeline
provides not only the activity-inducing (deconvolved) sig-
nal, but also the innovation (deconvolved and differentiated)
signal. The latter can then be used to mark key frames
of transient brain activity for temporal clustering to extract
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innovation-driven co-activation patterns (iCAPs) [21], dynam-
ically retrieved RSNs that can overlap in their spatial pattern
of activity.

By mapping back iCAPs onto the voxelwise activity-
inducing signals, a temporal expression profile can also be
retrieved for each network. An outstanding question is then to
probe the dynamics of those networks, which can be achieved
through temporal modeling approaches. The most commonly
applied tool in this setting has been the hidden Markov model
(HMM). For instance, Ou et al. [22] could successfully para-
meterise the dynamics of functional brain states extracted by
a sliding window framework and subsequent hard clustering,
while Chiang et al. did so at the level of graph metrics [23].
In other works, functional brain states were estimated within
the HMM pipeline, at the same time as their dynamics: to
do so, each state was parameterised by a multivariate normal
distribution, and the analysis focused either on its covari-
ance matrix (interpreting a state as a connectivity pattern)
[24], [25], or on its mean vector (regarding a state as an
activation pattern) [26].

An important limitation of the above strategies is the
assumption that at a given time, only one global brain state is
expressed, whereas in reality, this whole-brain pattern reflects
an overlap between the activity of multiple distinct functional
networks [27]. With the TA/iCAPs framework, those separate
building blocks are accurately extracted, and by parameterising
their respective dynamics with HMMs, a clearer and more
intuitive understanding of dFC is enabled. Here, we suggest
a novel framework that can link those HMM descriptions
together, so that possible dynamic cross-network relationships
can also be characterised on top of intrinsic network dynam-
ics. Several well-known observations in the literature based
on stationary measures, such as the anti-correlation between
the default mode network (DMN) and task-positive network
(TPN) [28], or the triple network hypothesis in which the
balance between those two networks is modulated by the
salience network (SN) [29], are excellent candidates to be
revisited in terms of dynamic interactions. Although some
efforts towards this direction are emerging in the literature
[30], they are hampered by the high computational load of
the problem at hand, which has so far required to downscale
the analysis to a limited subset of networks. We thus also
propose to overcome this constraint by a sparsity-inducing
regularisation term in our modeling framework, to enable only
a limited set of cross-network couplings in data-driven manner.

In the following sections, we first briefly review the main
features of the TA/iCAPs pipeline (II-A), and touch upon
the key points in estimating network dynamics with stan-
dard HMMs (II-B). We then describe and justify all the
main steps from our novel sparse coupled hidden Markov
model (SCHMM) framework, including how cross-network
couplings are introduced (II-C), how we ensure their sparsity
at an optimal level of regularisation (II-D), and how coupling
coefficients are thresholded to keep only the most significant
ones (II-E). We then move to implementation details of the
pipeline (II-F). Finally, the approach is validated on simu-
lated data (II-G/III-A) and applied to real RS time courses
(II-H/III-B).

II. METHODS

A. Total Activation and Innovation-Driven Co-Activation
Patterns in Brief

Total activation (TA) is formulated as a regularised denois-
ing problem; i.e., from the original BOLD signal matrix
Y ∈ R

V×T , where V is the number of voxels input to the
algorithm and T the number of time points at hand, we look
for the output X ∈ R

V×T such that

X̃ = argmin
X

1

2
||Y− X||2F +RT (X)+RS(X). (1)

Let �L = �D�Lh be the operator combining the deconvo-
lution and differentiation operations (assuming a known hemo-
dynamic response function). Then, �L{X(v, ·)} = Us(v, ·) is
the innovation signal, peaking at the time points characterised
by a signal change for voxel v, and the temporal regulariser
is described as:

RT (X) =
V�

v=1

λT (v)

T�

t=1

|Us(v, t)|, (2)

where λT (v) is the temporal regularisation weight for
voxel v.

Similarly, defining �Lap as the 3D second-order difference
operator and with λS(t) the spatial regularisation weight at
time point t , we have:

RS(X) =
T�

t=1

λS(t)
M�

m=1

� �

v∈Mm

�Lap{X (v, t)}2, (3)

where we consider M regions as defined by a structural
atlas [31], and Mm is the set of voxels belonging to region m.
This regularisation term imposes signal smoothness in each
area from the atlas. For more details about implementing a
discrete version of �L and solving the TA problem, we refer
to [32] and [20], respectively.

Following TA, the time points showing significant innova-
tion across a sufficient fraction of brain voxels are extracted by
using phase-randomized data for null distribution generation
(see [21] for details). K-means clustering is applied to separate
those frames into K distinct clusters. Let I (t, k) = 1 if the
frame at time t is assigned to cluster k, and I (t, k) = 0
otherwise (i.e., either not retained as a significant innovation,
or not assigned to cluster k); the set of iCAPs C ∈ R

V×K is
then expressed as:

C(v, k) =

T�

t=1

I (t, k)Us(v, t)

T�

t=1

I (t, k)

. (4)

Finally, if U(v, ·) = �Lh {X(v, ·)} is the deconvolved
(activity-inducing) BOLD signal for voxel v, the activity time
courses T ∈ R

K×T are obtained, for each time point t , as
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Fig. 1. Sparse coupled hidden Markov model framework. (A) Example iCAP activity time course (posterior DMN iCAP; see Figure 3A) for an
indicative subject. Time points are colored according to the state to which they have been assigned by k-means clustering (see IV): deactive (blue),
baseline (black) or active (red). (B) Three possible states of activity are hypothesised for each network: deactive (−1, blue), baseline (0, gray),
and active (+1, red). From a time point to the next, networks have an intrinsic probability to transit across those states. (C) Example hidden state
sequences for three networks, where some hidden states (h), intrinsic transition probability coefficients (β0), and modulatory coefficients (βl) are laid
out (see II-C for details). (D) Global analytical pipeline of the SCHMM approach, where optimal regularisation parameters are first established (II-F),
before the computation of modulatory coefficients on real and on null data (II-E). Significant modulatory coefficients are recovered, and converted
into transition probabilities. Both intrinsic transition probabilities (when all other networks are at baseline activity level), and the ones under external
modulatory influence (some other networks are (de)active), can be retrieved. K is the total number of analysed networks. BIC, Bayesian Information
Criterion.

T (k, t) = TP(k, t)+ TN (k, t), with:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

TP (·, t) = argminTP (·,t)||U(·, t)− CTP (·, t)||2
s.t. TP(k, t) ∈ [0,+∞[

TN (·, t) = argminTN (·,t)||U(·, t)− CTN (·, t)||2
s.t. TN (k, t) ∈ ] −∞, 0].

(5)

B. Estimation of Network Dynamics With Parallel HMMs

In practice, iCAPs show a characteristic temporal profile
involving excursions towards positive or negative levels of
activity; Figure 1A illustrates this behaviour with an indicative,
real iCAP activity time course. To capture these dynamics,
let us denote by h(k)

t the activity state of iCAP k at time
point t ; we assume that over time, this activity can switch
between deactive (h(k)

t = −1), baseline (h(k)
t = 0), and active

(h(k)
t = +1) states, as depicted in Figure 1B. We denote

this set of possible activity states by S = {−1, 0,+1}. Two
assumptions fitting the data structure at hand are made at this
stage: first, we enable only one discrete level of activation
or deactivation; second, we consider a state diagram where a
given network cannot directly transit from deactive to active
state, or vice versa.

In a parallel hidden Markov model (PHMM) framework,
each network k has its dynamics independently parameterised
by its probability to start in state i , �k,i = P(h(k)

1 = i), and its
probability to transit from state i to state j , A(k)

i→ j = P(h(k)
t+1 =

j |h(k)
t = i). The observed values characterising each state i

are also typically modeled by a normal distribution of mean
μk,i and standard deviation σk,i .

C. Coupling Separate HMMs

In our framework, we hypothesise that transition probabil-
ities across states for a given network evolve dynamically as
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a function of the activity levels of the other networks (see
Figure 1C). For instance, if one iCAP becomes active, it may
increase the likelihood that one or several others enter a more
active state as well, leading to a spatiotemporal sequence of
brain activity akin to the ones put forward in previous dFC
works [33].

The transition probability of network k from state i
(at time t) to state j (at time t + 1), which we denote
by B(k)

t,i→ j , thus depends on two separate contributions: the
intrinsic transition probability of network k itself, represented
by the coefficient β

(k)
0,i→ j ; and the modulatory influences of

the other networks l �= k, which we denote by β
(k)
l,i→ j .

Following [34], we express the conditional probability to reach
a given end state as a multinomial logistic regression:

B(k)
t,i→ j = P(h(k)

t+1 = j |h(k)
t = i, h(−k)

t )

= e

β
(k)
0,i→ j+

�

l �=k

β
(k)
l,i→ j h(l)

t

�

m∈S̃
e

β
(k)
0,i→m+

�

l �=k

β
(k)
l,i→m h(l)

t

. (6)

In this equation, h(−k)
t refers to the activity level of all

networks else than k, and the set S̃ encompasses all the
possible end states from the considered start state. If all
networks else than k are in a baseline state of activity at
time t (h(l)

t = 0, for all l �= k), then at this moment, only
β

(k)
0,i→ j contributes to the transition probability estimate (that

is, network k evolves according to its intrinsic dynamics). If
another network l is in the active state at time t , however, it can
enhance/decrease (positive/negative β

(k)
l,i→ j ) the probability of

network k to transit from state i to state j from time t to time
t + 1. If several other networks l are active, their modulatory
influences sum up. In the case of deactive networks, the
reasoning is the same, but the sign of the influence is flipped.

With this strategy, we thus assume fixed cross-network
modulatory strengths (i.e., when a network modulates another,
it always does so with the same magnitude), but those modu-
lations are effective only at time points when the modulating
networks are (de)active; this is what renders our approach
dynamic.

D. Sparsity in Modulatory Influences

In practice, including all possible cross-network interactions
in the model would amount to inferring 9K 2 separate values,
which becomes computationally demanding for a large number
of networks, and also does not fit with our understanding of
the brain, where only particular subsets of functionally related
networks are expected to interact to generate the content of
mind wandering [35].

For those reasons, we opt for a regularisation strategy where,
for each network k and start state i , we constrain the set of
incoming modulatory influences β

(k)
l,i→ j , l �= k to be sparse

through �1 regularisation [36]. Formally, we thus impose:
�

l �=k

|β(k)
l,i→ j | < ρk,i . (7)

The choice of a network-specific regularisation level enables
a more accurate representation of RS brain activity, where
we hypothesise that some networks may receive a larger
amount of modulating influences than others. For instance, the
DMN has been associated to a wide array of brain functions
[37], [38], and could thus be expected to be particularly
coupled to other functional brain networks. Further, we also
enabled start state-specific regularisation levels, because we
wanted to include the possibility that modulating influences
may not be equally potent on a deactive, an inactive, or an
active network.

E. Thresholding of Coupling Coefficients

To ensure that modulatory coefficients are truly reflective of
dynamic network interactions, we append another processing
layer in which each β

(k)
l,i→ j is compared to a distribution of

values created under the null hypothesis of no such cross-
talks. Only the coefficients that survive this thresholding step
are included in the final model estimate (see Figure 1D, middle
boxes).

To generate the null distributions, coefficients are recom-
puted at optimal regularisation levels (see II-F) on network
time courses independently shifted by a random number of
samples ns ∈ [1, T ], in order to break down causality. This
is done nnull = 100 times. For each coefficient, the 1st and
99th percentiles of the generated null distribution were chosen
as thresholds, and only the coefficients lying outside of this
interval were retained.

When the final set of coefficients has been obtained, Eq. (6)
can be used to determine the transition probabilities of any
network k both in the absence of any external modulation
(h(−k) = 0), or under modulatory influences from the other
networks (h(−k) �= 0; see Figure 1D, rightmost box).

F. Implementation

To solve the SCHMM problem for network k and start
state i = 0, for which there are three possible end states,
we individually consider the set of coefficients related to each
end state j by forming a partial quadratic approximation to the
log-likelihood [34]. To retrieve β

(k)
0,i→ j and β

(k)
l,i→ j for l �= k,

we then need to minimize:
1

2N

�

t∈C
[ωt, j (zt, j−β

(k)
0,i→j−

�

l �=k

β
(k)
l,i→j h̃(l)

t )2]+λk,i

�

l �=k

|β(k)
l,i→j |,

(8)

where C = {t : h(k)
t = i} is the set of N selected data points

(that is, the time points of interest when network k is in state i )
and h̃(l)

t the estimated activity level of network l at time t .
The coefficients of this regularised least square problem are
given by:

⎧
⎪⎨

⎪⎩

ωt, j = B̃(k)
t,i→ j (1− B̃(k)

t,i→ j )

zt, j = β̃
(k)
0,i→ j +

�

l �=k

β̃
(k)
l,i→ j h̃(l)

t +
y(k)

t, j−B̃(k)
t,i→ j

ωt, j
.

(9)

In the above, for the i to j state transition, β̃(k)
0,i→ j is the current

estimate of the baseline regression coefficient of network k,
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β̃
(k)
l,i→ j is the current estimate of the modulatory coefficient of

network l on network k, and B̃(k)
t,i→ j is the current estimate

of the transition probability of network k at time t . The term
y(k)

t, j = δ
h(k)

t+1, j
specifies, for network k, which data points from

C (h(k)
t = i ) are followed in the following time point by state

j (h(k)
t+1 = j ), denoting the transition of interest.

To solve this optimisation problem, we use PHMM outputs
as initial transition probability coefficients (β̃(k)

0,i→ j = A(k)
i→ j )

and initialise couplings at zero (β̃(k)
l,i→ j = 0). To estimate

the activity level of all networks and select the working
set of data points C for a given start state, we pick the
most likely state at each time point according to the PHMM
smoothed node marginals; i.e., P(h(k)

t |T(k, ·)). Coefficients
are iteratively updated across all three possible end states j ,
and recentered [34] as given by:

�
β

(k)
0,i→ j ← β

(k)
0,i→ j − β̄

(k)
0,i

β
(k)
l,i→ j ← β

(k)
l,i→ j −max(β̄

(k)
l,i , β̂

(k)
l,i ),

(10)

with β̄
(k)
0,i /β̄(k)

l,i the mean and β̂
(k)
l,i the median across end states,

respectively.
Updates of the modulatory coefficients for a given network k

are performed in random order, until convergence, through
soft thresholding [39]. Let R(k)

0,t,i→ j =
�

l �=k

β
(k)
l,i→ j h̃(l)

t and

R(k)
l,t,i→ j =

�

m �=k,l

β
(k)
m,i→ j h̃

(m)
t ; we then have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β
(k)
0,i→ j =

�

t∈C
ωt, j (zt, j−R(k)

0,t,i→ j )

�

t∈C
ωt, j

β
(k)
l,i→ j =

soft(
�

t∈C
ωt, j h̃(l)

t (zt, j−R(k)
l,t,i→ j ),λk,i )

�

t∈C
(wt, j h̃(l)

t )2
,

(11)

with soft(x, λ) = sign(x)(|x | − λ)+ the soft thresholding
operation applied on x with threshold λ.

Algorithmically speaking, the following is run for each start
state i and network k:

Compute PHMM parameters
Initialise β

(k)
0,i→ j and β

(k)
l,i→ j for j ∈ S and l �= k

Select working set C
Initialise end state j
while L(iter+1) − L(iter) < � = 10−3 and niter < 200 do

Update ωt, j and zt, j ∀ j
Recenter β

(k)
0,i→ j and β

(k)
l,i→ j for l �= k

Compute log-likelihood L(iter)

Compute β
(k)
0,i→ j and β

(k)
l,i→ j for l �= k

Change end state
end while

In the simpler case of the start state i = −1 or i = +1,
for which only two possible end states exist, end state
iterative updates and recentering of coefficients are not
needed.

To select optimal regularisation levels for each net-
work/start state case, we perform grid search over the interval
λk,i ∈ [0.5, 1000], where we solve for modulatory coefficients
as described above and select the scenario for which the
Bayesian Information Criterion (BIC) [40] is minimal, that is,
for which an optimum between model complexity (number
of non-null coefficients) and data fitting quality is reached
(see Figure 1D, leftmost box). As advised in [34], to speed
up computations, warm restarts are used to initialise coupling
coefficients, solving from larger to smaller λk,i values.

G. Validation on Simulated Data

To validate our SCHMM pipeline, we generated 20 sets
of simulated time courses (1000 data points per network in
each set) for a system of three networks, with three possible
activity states (−1, 0, +1) and normally distributed noise
(σ = 0.05) added to each observation. We considered three
different ground truth cases: (1) independent evolution of
the networks, (2) modulation of network 2 onto network 1
to increase its overall activity, and (3) a similar modulation
applied on both networks 1 and 3. Example activity time
courses and ground truth transition probabilities for all net-
works and cases are presented in Figure 2, left column.

From the final modulatory coefficients retrieved by the
SCHMM framework, we computed transition probabilities in
the absence and in the presence of modulatory couplings
using Eq. (6), and quantified the error made as the average
absolute difference in probability with the ground truth across
all possible transitions. We compared our SCHMM approach
to the outcomes from the simpler PHMM scheme, where
networks stay uncoupled (see II-B).

Alternatively, the set of modulatory coefficients can also
be interpreted as a directed graph representation of network-
to-network interactions. Coefficients are computed for all
possible state transitions, but to simplify the analysis, we
devised a summarising metric of activity upregulation describ-
ing the ability of a modulating network l, when turning active
(h(l)

t = +1), to entrain network k into a more active state
itself.

For this purpose, we define the difference in transition
probability between a case without any external influence by
other networks, and one when only network l is active:
�P(k)

l,i→ j = P(h(k)
t+1 = j |h(k)

t = i, h(l)
t = +1, h(−k,−l)

t = 0)

−P(h(k)
t+1 = j |h(k)

t = i, h(−k)
t = 0). (12)

If the value is positive, it means that for the considered i to
j transition, there is an increased transition probability for
network k upon activation of network l. We then define the
activity upregulation of network l onto network k as:

K (k)
U,l =

�

j>i

(�P(k)
l,i→ j )+ +

�

j<i

(−�P(k)
l,i→ j )+ (13)

The value increases either if activity of network l makes
transitions of network k towards more active states more likely
(first term), or if it makes transitions towards lower activity
states less likely (second term). One K (k)

U,l value can be seen
as the edge of a directed graph from network l to network k.
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Fig. 2. Comparison of SCHMM results to other methods on simulated data. For three simulated cases (A, B and C), we display ground truth
parameters of the system on the left hand side, including example time courses for the three simulated networks (top left plot), transition probability
matrices describing the dynamics of the networks (bottom left), and a graph description of the modulations at play across networks (bottom right
graph). In the middle panel, we present estimated transition probabilities with PHMMs (top row) or with the SCHMM approach, when cross-network
modulations are enabled (bottom row) or not (middle row). In the right panel, we show the graph descriptions obtained using Pearson correlation
coefficient (top left), the GLasso approach (top right), or the SCHMM approach (bottom). In the first scenario (A), networks evolve independently,
and so the dynamics of the networks are stable over time. In the second scenario (B), network 1 has its dynamics altered when network 2 turns
active (Mod ON). In the third scenario (C), networks 1 and 3 both have their dynamics similarly modified when network 2 turns active.

We compared the accuracy of this graph representation
to the outcomes obtained with the more conventional Pear-
son correlation coefficient and graphical lasso (GLasso) [41]
approaches. For the former case, coefficients were computed
for each generated set of time courses, and thresholded using
a null distribution approach similar to the SCHMM case
(see II-E). For the latter case, where a sparse covariance
matrix is obtained, grid search for an optimal regularisation
level was performed, similarly to the SCHMM case (see II-F),
prior to null data-based thresholding. In both settings, to obtain
population-level measures that could be readily compared to
the SCHMM activity upregulation metric, edge weight rep-
resented the fraction of subjects with a significant coefficient
surviving past the thresholding process.

The graph representations of all three cases were compared
to the ground truth using the average absolute difference in
edge weight as the error measure. For each case, data was
normalised so that the largest edge across the three examined
simulated cases was set to 1. Because Pearson and GLasso
outcomes are non-directional, we considered a symmetrical
ground truth in those cases.

H. Application to Experimental fMRI Data

We wanted to determine whether reliable cross-network
couplings could be retrieved on real RS data, and con-
sidered recordings from two independent datasets: the first
(dataset DS1) was acquired on nDS1 = 12 healthy volunteers
(38.4 ± 6 years old) with a Siemens 3T Trio TIM scanner,
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TABLE I
EVOLUTION OF NETWORK DYNAMICS ESTIMATION ERROR ACROSS

METHODS (PHMM VS SCHMM), MODULATION TYPE (ON VS OFF),
EXAMINED SIMULATED CASES (A, B, C) AND

NETWORKS (N1, N2, N3)

using a 32-channel head coil and gradient-echo echo-planar
imaging (TR/TE/FA =1.1s/27ms/90°, matrix = 64×64, voxel
size = 3.75 × 3.75 × 5.63mm3, 21 slices). We analysed the
TDS1 = 440 data points (8.1min) from the iCAP time courses
previously extracted from this dataset in [21], focusing on the
restricted set of 13 functionally meaningful iCAPs discussed
by the authors.

The second dataset (DS2) involved nDS2 = 21 healthy
individuals (22 ± 2.3 years old) whose recordings were
acquired with a Siemens 3T Trio TIM scanner, using a
12-channel head coil and gradient-echo echo-planar imag-
ing (TR/TE/FA=2.1s/40ms/90°, matrix=128x84, voxel size=
3.2 × 3.2 × 3.84mm3, 32 slices). We examined TDS2 = 450
functional volumes (15.8min), for which activity-inducing
signals were computed by the TA framework [20]. Following
normalisation to MNI space, DS1 iCAPs were back-projected
onto those time courses to yield the analysed DS2 network
activity profiles.

We compared the directional graphs resulting from our
activity upregulation metric across datasets, and also to
GLasso results. We assessed similarity in the set of retrieved
couplings by the Jaccard index.

III. RESULTS

A. Validation on Simulated Data

Across the examined simulated examples, the estimation of
modulatory coefficients for a particular network at optimal
regularisation level always took less than a second for the
deactive and active states, and varied from 1 to 5 minutes for
the baseline state as a function of the assessed network and
extent of regularisation. BIC grid search time was in the order
of a minute for the active and deactive states, and climbed
to around an hour for the baseline case. One iteration of the
null data generation and computation process lasted for 6 to
7 minutes. Here and elsewhere, computations were run on an

Intel Xeon CPU E5 at 2.4GHz with 14 cores, 256GB RAM
and Ubuntu 16.04.

Errors made in estimating the dynamics of simulated net-
works under different scenarios of modulation are displayed in
Table I, for the PHMM case where networks are not coupled,
and for our SCHMM framework where they are. In the three
considered cases, when turning active, network 2 can influence
both networks 1 and 3 (case C, Figure 2C), only network 1
(case B, Figure 2B), or no other network (case A, Figure 2A).
For modulated networks, there are thus two different ground
truth dynamics: the intrinsic one (Mod OFF), and the one upon
modulation (Mod ON). It can be seen from error measure-
ments that the SCHMM framework consistently outperformed
the PHMM approach across networks, modulation cases and
assessed scenarios.

In terms of graph representation, Pearson, GLasso and
SCHMM approaches all successfully managed to retrieve the
ground truth in case A (with respective errors of 0.0167,
0.0167 and 0) and case B (0.13, 0.16, 0). In the more complex
case C, however, both the Pearson and GLasso graph estimates
included an incorrect link between networks 1 and 3 (resulting
in high errors of 0.683 and 0.63), whereas the SCHMM
approach correctly retrieved the true graph structure (with a
low error of 0.0002).

B. Application to Experimental fMRI Data

On two independently acquired RS datasets (DS1 and DS2),
we next probed the existence of cross-network couplings
across 13 iCAPs previously derived in [21] (see Figure 3A
for spatial maps). The estimation of modulatory coefficients
for a given network, at optimal regularisation level, always
took less than a second for deactive and active start states,
and around a minute in the baseline case. BIC grid search
times were between 1 and 2 minutes for deactive and active
start startes, but a longer 2 to 3 hours for the baseline start
state case. As for null data generation and computation, one
complete iteration took from 5 to 15 minutes.

Of all possible β
(k)
l,i→ j modulatory coefficients,

18.6%/21.79% (DS1/DS2), 58.97%/75.21% and 14.1%/
17.31% survived the sparsity constraint for deactive,
baseline and active start startes, respectively. These
values were reduced to 9.6%/14.1%, 30.77%/39.53%
and 8.3%/12.18% following comparison to null data. The
activity upregulation metric computed from those coefficients
(see II-G) showed 29.49%/25% non-null coefficients, while
with GLasso, 37.18%/33.3% of all possible couplings were
retained.

Cross-network couplings found with the SCHMM and the
GLasso approaches, for both examined datasets, are pre-
sented in Figure 3B. For DS1, almost half of the signifi-
cant couplings found with the SCHMM framework matched
GLasso-derived relationships (JDS1 = 0.43), and the same
was observed for DS2 (JDS2 = 0.5). In particular, the
MOT→AUD, pVIS→sVIS and DMN→ACC couplings were
always amongst the strongest captured relationships.

Around half of the links captured with GLasso were shared
across datasets (JG Lasso = 0.49). In the SCHMM case,
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Fig. 3. Analysis of cross-network couplings on two independent datasets. (A) Spatially z-scored maps of the 13 examined networks, with
denominations and abbreviations as in [21] and MNI coordinates shown in white caption below the brain slices. (B) For DS1 (top row) and DS2
(bottom row), graph representations of cross-network couplings as found with the GLasso (left column) and SCHMM (right column) approaches. In
GLasso representations, edge weight stands for the fraction of subjects showing a significant relationship. In SCHMM displays, edge weight stands
for activity upregulation values, and edges with a value lower than 0.01 (DS1) or 0.025 (DS2) are not displayed. The size and color coding of the
nodes are proportional to their degree.

directional couplings were in agreement in almost a third
of cases (JSC H M M = 0.28), a lower value because of
the additional directionality requirement. In addition, activity
upregulation values were around two-fold lower in DS2.
Interestingly, some of the strongest couplings consistently
captured with the SCHMM across both datasets were not seen,
or only barely detected (significant in only one subject) with
the GLasso approach: this was the case of the pDMN→DMN,
DMN→pDMN and pDMN→PRE links.

IV. DISCUSSION

The SCHMM framework successfully retrieved the ground
truth dynamics of all examined networks across three sim-
ulated cases with an increasing amount of cross-network
modulations, and constantly outperformed PHMMs in doing
so. In our simulations including cross-network couplings,
network 2 could modulate the others when turning active
itself; this means that at some time points, the dynamics of
the other networks were purely governed by their intrinsic



238 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 1, JANUARY 2018

propensity to transit across activity states, while at others, their
dynamics were altered. With a PHMM approach, those two
types of moments are mixed in the estimated values, and thus
cannot be disentangled. With the SCHMM, however, accurate
transition probabilities can be retrieved both for intrinsic
dynamics—setting modulatory influences to 0 in Eq. (6)—and
for modulated ones.

On top of providing accurate estimates of network dynam-
ics, the SCHMM approach could also successfully reproduce
the ground truth graph structure (denoting directional modula-
tions between networks) across all examined cases, using our
summarising measure of activity upregulation. In the simpler
cases with zero or one modulatory coupling, results were
on par with Pearson and GLasso outcomes, but in the more
elaborate case where network 2 was modulating the 2 others,
the SCHMM was the only approach that correctly retrieved the
true underlying graph structure, and did not mistakenly link
networks 1 and 3. This is because, contrary to correlational
approaches for which an edge reflects activity in two networks
at the same time points (which may arise due to a third
external source), the SCHMM considers whether the activity
of a network at time t will drive a change in another from
time t to time t + 1, somehow closer to effective connectivity
tools [42].

Based on these results for simulated data, we could
have expected a reduced amount of significant couplings
on experimental fMRI data using the SCHMM, but this
was not the case, possibly because when examining network
relationships, indirect couplings may remain very limited,
with direct network-to-network interactions dominating. Inter-
estingly, around half of SCHMM cross-network couplings
matched the ones retrieved with GLasso, and this held true
on two independent datasets that we analysed. However, even
if similar network-to-network relationships are retrieved, the
SCHMM also recovers their directionality. For instance, the
pVIS→sVIS link was more prominent than the sVIS→pVIS
one in both datasets, which might indicate the dominant flow
of visual information from low-level to high-level visual brain
structures.

Some couplings were only detected by the SCHMM, and
involved variants of the DMN, a system known to dissociate
into separate subnetworks linked to different types of internal
processes [38], [43]. The reason for the SCHMM sensitivity
to those interplays may be that when the modulating network
triggers enhanced activity in the modulated network, it also
lowers in activity at the same time. This way, there is no
temporally overlapping activity, and so no way for the GLasso
to detect the relationship. Such spatiotemporal sequences in
which a particular network (for instance, pDMN) progressively
loses or gains some of its constituting nodes to change in
spatial pattern (for instance, into DMN), perhaps because those
nodes change their modular allegiance [44], [45], have already
been resolved in RS recordings [33] without being further
investigated.

Although insightful parallels could be drawn across our
two examined datasets, the match in retrieved cross-network
relationships remained partial, both for the GLasso and
the SCHMM cases. Several factors may have contributed,

starting with the different ages of the studied popula-
tions, but we believe the main cause to be the different
TRs of the acquisitions (1.1s for DS1, 2.1s for DS2), as
SCHMM estimates, in particular, rely on frame-to-frame
changes in activity. In accordance with this hypothesis, we
noticed a roughly two-fold decrease of retrieved activity
upregulation values in our DS2 dataset, possibly because
rapid directional influences are more rarely observed in this
setting.

Methodologically speaking, the use of sparsity-based strate-
gies has already been suggested in past RS FC work, where
sparsity was then either imposed at the level of functional
connectivity matrices retrieved from a sliding window analysis
(i.e., a limited amount of non-null connections was allowed in
each matrix; see for example [8], [46], [47]), or at the level of
global extracted functional connectivity brain states [24], [48].
With the present strategy, which is inspired from the bioinfor-
matics field [49], we do not rely on any connectivity estimate,
and we impose a restricted set of non-null modulatory coef-
ficients onto a given network for a particular start state of
activity. The power of the SCHMM approach is data-driven
selection of relevant modulations, so that dimensionality of the
problem remains affordable.

Finally, we note a few limitations and possible improve-
ments of the current framework. First, to generate iCAP
activity time courses, one could rely on an improved version
of the TA approach that does not require the use of an atlas
anymore, and instead imposes piecewise constant activity in
space [50]. Then, to retrieve PHMM parameters, standard
expectation maximisation (EM) [51] did not converge to a
mixture solution that properly segregated activity states, and
we thus resorted to a simpler approach where for each network
k, state means μk,i were obtained as the centroids from a k-
means clustering run on all time points T(k, ·), and standard
deviations σk,i were then computed on the time points assigned
to each cluster (see Figure 1A). Only start and transition
probabilities were iteratively updated within an EM scheme,
keeping μk,i and σk,i fixed.

Regarding the SCHMM framework itself, modulatory coef-
ficients are so far of similar intensity, but opposite sign,
when the modulating network is active or deactive, which
may be an oversimplification. Also, parameters are assumed
constant across the analysed subjects, which is a clear over-
simplification knowing that individual fingerprinting can be
reliably achieved on the basis of RS fMRI recordings [52].
In addition, there are alternatives to CHMM modeling, such
as through fully-linked HMMs or dynamically multi-linked
HMMs [53]; the comparison of those different approaches
may consist in an interesting direction to follow. Finally,
computational time is so far relatively high when one wishes
to analyse systems made of more than a few networks; to
improve in this regard, it could be interesting to consider
a variant of the present model where only two different
activity states are enabled, as the bulk of computational
time is currently taken in solving for baseline start states
of activity. This could then promote the application of the
SCHMM framework to a dimensionally larger region-level
setting.
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V. CONCLUSION

In conclusion, our SCHMM framework showed promising
potential to unravel directional cross-network couplings in
fMRI data, including subtle interactions that could not be
resolved with simpler correlational methods. We hope that our
efforts shall pave the way towards more frequent analyses of
brain network dynamics in future years.
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