
Statistical tool for the detection of intrinsic signals measured by
optical imaging

Pierre Bouillot and Shahan Momjian

Geneva University Hospitals
Department of Clinical Neurosciences, Service of Neurosurgery

June 5, 2012

Abstract
We provide a description of the statistical tool “OIS detection” devoted to the detec-

tion of epilepsy and stimulation related neuronal excitations. This tool is based on the
technique of optical imaging of intrinsic signals (OIS) which is shortly reminded in this
document as well as the technical details of the statistical methods used in the imple-
mented detection processes. We show that the most robust algorithm requires a registra-
tion precomputational step for correcting the cortical movement, a wavelet decomposition
and a time whitening step in order to deal with the spatial and the time correlations, re-
spectively.
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1 Optical imaging of intrinsic signals (OIS)
Optical imaging of intrinsic signals (OIS) is a promising technique [14, 15] for measuring
the cortical light reflectance changes related to the neuronal activity. The light reflectance is
measured with a charge-coupled device (CCD) camera after being filtered through a bandpass
filter (see Fig. 1). Since the light reflectance varies with the concentrations of oxy- and
deoxyhemoglobin (HbO2 and Hbr respectively) induced by the hemodynamic response to
the neuronal activity, the detection of stimulation related OIS can be used for functional
brain-mapping.

Figure 1: Schematic representation of a typical intraoperative OIS setup. [taken from
Ref. [14]]

In this report, we describe the statistical detection tool based on the OIS technique we
have developed. This tool is devoted to work in an intraoperative environment in order
to guide the neurosurgeons during the brain surgery or to locate spatially the epilepsy. In
this document, we focus mainly on the detection of stimulation related neuronal activities.
Nevertheless, the tool is adapted to the epilepsy or other neuronal activities detection. We
first remind the basic concepts of the OIS technique and the properties of the expected signals
in Sec. 2. Then, the detection methods are described in Sec. 3. Finally, we present the user
interface of our tool in Sec. 4 and we conclude with a summary of the obtained results and a
discussion of the possible improvements in Sec. 5.

2 Introduction
In this section, we present the basics of the OIS technique discussing first the Beer-Lamber
law (Sec. 2.1) which describes the relation between the hemoglobin concentrations and the
light absorption, then we show typical observed optical signals (Sec. 2.2) and the related linear
model (Sec. 2.3) we can use for their prediction. Finally, we briefly remind the acquisition
protocol (Sec. 2.4) and how we modelize artificial data sets for the validation of our detection
processes (Sec. 2.5).

2.1 Beer-Lambert

The OIS technique is based on the Beer-Lambert law which modelizes the light absorption
in a liquid. According to this law and for a monochromatic light of wavelength λ, a small
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local temporal variation of oxy- and deoxyhemoglobin concentrations (∆[HbO2](r, t) and1

∆[Hbr](r, t) respectively) induces a linearly dependent variation of the reflected light intensity
∆Iλ(r, t), i.e. 2

∆Iλ(r, t)
Iλ0 (r)

∝ −ελHbO2 ·∆[HbO2](r, t)− ελHbr ·∆[Hbr](r, t) (1)

where Iλ0 (r) is the light reflectance at rest. ελHbO2
and ελHbr are the absorbance coefficients of

HbO2 and Hbr, respectively. These show a strong wavelength dependence (see Fig. 2).

Figure 2: Wavelength λ (in (nm)) dependence of the absorbance coefficients of the oxy- and
deoxyhemoglobin (ελHbO2

and ελHbr respectively). [taken from Ref. [14]]

Following Eq. (1) and Fig. 2, depending on the wavelengths selected by the bandpass
filter mounted beneath the CCD camera, the variations of the recorded intensity measure
different linear combinations of hemoglobin concentration changes. The two most interesting
light filtering are :

- at the isobestic points 550 or 570 nm for which ελHbO2
= ελHbr. In this case the variation

of light intensity
∆Iλ(r, t)
Iλ0 (r)

∝ − (∆[HbO2](r, t) + ∆[Hbr](r, t)) (2)

measures the the total hemoglobin concentration variation ∆[HbO2](r, t)+∆[Hbr](r, t) =
∆[Hbt](r, t).

- above 610 nm, ελHbO2
� ελHbr, then the variation of light intensity

∆Iλ(r, t)
Iλ0 (r)

∝ −∆[Hbr](r, t) (3)

measures mainly the variation of deoxyhemoglobin concentration ∆[Hbr](r, t).

2.2 Typical signals

In order to illustrate these two cases, Fig. 3 shows typical optical signals ∆Iλ(t)/Iλ0 measured
at λ = 550 nm and 610 nm in a rat model after a 2 s whisker stimulus. These two signals are
analogous to the regional cerebral blood flow (rCBF) and the blood oxygen level dependent
signal (BOLD) measured in functional magnetic resonance imaging (fMRI) [7]. In effect, an

1t stands for the discrete time at which the images are recorded and the vector r locates the pixels of each
recorded image.

2The symbol “∝” means “proportional to”.
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increase in the blood flow follows the neuronal activation to insure the supply in oxygen of
the neurons. It results in an increase of the total hemoglobin concentration which leads to
a decreasing of the light reflectance intensity at λ = 550 nm. The blood flow variations
being slightly delayed from the neuronal activity, the concentration of deoxyhemoglobin first
increases due to the neurons supply in oxygen before being extracted from tissues when the
blood flow increases. This results in an initial dip followed by an stronger increase in the light
intensity measured at λ = 610 nm. Although the initial dip of the optical signal at λ = 610 nm
induced by the early increase in deoxyhemoglobin is expected to give the strongest correlation
with the neuronal activity [14] (because directly related to the oxygen consumption of the
activated neurons), both signals can be used for detecting neuronal activation. In this work, we
use a bandpass filter centered at λ = 610 nm to focus on the deoxyhemoglobin concentration
changes.

Figure 3: Typical temporal evolution of the optical signals ∆Iλ(t)/Iλ0 in a rat model after
a 2 s whisker stimulus (gray area) measured at an isobestic point λ = 550 nm (thick black
line) and 610 nm (thick gray line). Thin lines correspond to the error margins. [taken from
Ref. [17]]

2.3 Linear response

In order to correctly detect stimuli related neuronal excitations with the OIS technique, it is
important to predict as best as possible the light reflection variations ∆Iλ(r, t) induced by
a given stimulus h(r, t). Although several models of the hemodynamic response such as the
balloon model [7] have been developed for the fMRI interpretation, we apply in this work a
more experimental model based on a linear response method. Similarly to Ref. [3] for the
fMRI, we assume that the temporal variation of the light reflection depends linearly on the
time evolution of the stimulus, i.e.3

∆Iλ(r, t)
Iλ0 (r)

∝ h(r, t) ? rλ(t) (4)

with rλ(t) is the impulsional response of the OIS at the measured light wavelength λ. In this
work we consider the experimentally measured impulsional response from Ref. [4] induced by
a very short 1 s whisker stimulus in a rat model (see Fig. 4). A comparison between the
prediction of the linear response and the OIS signal measured after four periodic 1 s stimuli
is shown in Fig. 4.a. As you see in this figure, although the predicted intensity is very close

3The symbol “?” means convolution product i.e. (f ? g) (t) =
∫
dτ f(t − τ) g(τ) for continuous functions

f(t), g(t) (t ∈ R) and (f ? g)i =
∑

j
fi−j gj for discrete data sets fi = f(ti), gi = g(ti) (i ∈ Z).
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to that measured, the linear response overestimates slightly the OIS signal. This effect is
probably due to the neuronal adaptation which is neglected by the linear response [3].

In the Fourier basis, the linear response becomes a simple multiplication between the
impulsional response and the stimulus, i.e. 4

∆Îλ(r, ν)
Iλ0 (r)

∝ ĥ(r, ν) · r̂λ(ν). (5)

Convolved with the stimulus, the impulsional response r̂λ(ν) behaves like a lowpass filter
with peaks located at the frequency of its pseudo period (see Fig. 4.b). This implies that
the predictions using the linear response have principally low frequency components and it
suggests that the high frequency signals in the measured OIS are mainly due to the noise.
These can be observed in the predicted and the measured spectra of the four stimuli OIS in
Fig. 4.b which shows mainly low frequency components in the same support as the impulsional
response. The additional peaks in the four stimuli OIS originate from the Fourier transform
of the stimuli ĥ(ν).
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Figure 4: (a) Comparison between the variation of the OIS, ∆Iλ(t)/Iλ0 , from Ref. [4] measured
at λ = 635 nm in a rat model after a 1 s whisker stimulus (in red), four repeated 1 s
whisker stimuli (in green)). The linear response prediction of the four 1 s whisker stimuli OIS
computed with Eq. (4) and the 1 s whisker stimulus (in red) considered as the impulsional
response rλ(t) is plotted in black. The dark gray area represents the first 1 s whisker stimulus
and the light gray areas are the three next stimuli. (b) Absolute value of the discrete Fourier
transform of the quantities shown in (a) with the same color code.

In the following, we use the linear response to modelize the artificial data (see Sec. 2.5)
for testing our activity detection methods. On the contrary, in the detection process, the
modelized neuronal activity in the linear model (see Sec.3.1) is simply the stimulus h(t) (i.e.
rλ(t) = δ(t)).

2.4 Data acquisition

In this work, the data acquisition of the light reflectance filtered at λ = 610 nm is performed
with a CCD camera with resolution 496×658 pixels. For decreasing the computation time, we

4The Fourier transform f̂(ν) of a function f(t) (ν, t ∈ R) is defined as f̂(ν) =
∫

dt f(t) e−i2πνt and
as f̂k =

∑
j
fj e

−i2πjνk for the discrete Fourier transform f̂k = f̂(νk) = f̂(k/(N∆t)) for a set of Nt data
fj = f(tj) = f(j∆t) (j, k = 0..Nt − 1).
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reduce the spatial resolution by two in the two directions averaging the measured intensity
over the 4 neighboring pixels. For the detection of stimulation related neuronal activity,
the patient receives periodically an electric stimulation on the median nerve of its wrist.
The chosen acquisition protocol consists in 4 repeated blocks of 48 s composed of 24 s of
stimulation followed by 24 s of rest (see Fig. 5). The duration of the stimulus and the rest
should be long enough in order to minimize the transitory effects which are ∼ 12 s long (see
the impulsional response in Fig. 4.a). Thereby the stimulus has Fourier components in the
support of the impulsional response (see Fig. 4.b). In addition, the acquisition rate νa should
be high enough to include all the details of the hemodynamique response, i.e. νa & 0.5 s−1

(see Fig. 4.b). In this work, we chose νa = 2 s−1, i.e. a picture is recorded every discrete time
ti = i∆t with i = 1..Nt (Nt = 384 and ∆t = 0.5 s) synchronized with the stimulus.
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Figure 5: Temporal evolution of the electric stimulus.

2.5 Artificial data

In order to test the detection methods presented in the next section, we need artificial sets
of data in which the activation areas are known. Furthermore the characteristics of these
simulated data must modelize as well as possible those of the original data. Thus, we start
the data modelization with the time average of the original data set (“average” picture in
Fig. 7). On the top of the cortical area, we add 8 activated zones (2 for each radii 2.5, 5, 10,
and 15 pixels). In order to smooth their boundaries, these activated zones are convolved with
a gaussian spatial filter with a standard deviation of 2 pixels (“activated zones” picture in
Fig. 7). Applying the linear response on the temporal evolution of the electric stimulus shown
in Fig. 5 (Sec. 2.3) we modelize the reflexion intensity variation ∆I(r, t)/I0(r) in each pixel of
the activated zones (“activity” picture in Fig. 7). The activation amplitude of ∆I(r, t)/I0(r)
is chosen to be 0.01 (after the transition response). This corresponds to the typical order
of magnitude of the OIS measured in human cortices [16]. Afterward the obtained temporal
series are moved according to the displacement field (multiplied by 2) extracted from the
registration of the original data (see Sec. 3.2). Finally, we add a gaussian noise with a
standard deviation of5 200 in agreement with the noise measured in the original data. This
computational scheme of the artificial data is pictured in Fig. 6.

5The total amplitude of the recorded pictures is 214 = 16384.
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Figure 6: Diagrammatic representation of the artificial data computation. The modelized
“activity” ∆I(t)/I0 is applied on the “average” data in the chosen “activated zones” located
inside the cortical area. The “temporal series” generated in this way is then moved applying
the displacement field and noised.

3 Detection methods
Although the cornerstone of our stimulus related neuronal activity detection is provided by
the general linear model (GLM) [5] discussed in Sec. 3.1, many important preprocessing
steps are necessary to improve the quality of the data and the detection precision. Before
discussing how these precomputational steps are combined, we briefly describe each of them
in the following.

Registration The data acquisition taking few minutes, the brain is free to move during
that time due to the breathing or the heartbeat. Thus, in order to match each picture
with the others, a registration step described in Sec. 3.2 is necessary for decreasing the
movement related noise.

Glare detection (GD) The refraction index of the cortical being different from that of the
air, it generates interface reflexions which pollute the OIS related reflexion discussed in
Sec. 2.1. As these glares are uncorrelated with the stimulus they mainly add noise to
the measured data. Furthermore, these can be strong when the reflexion angle is close
to the light incident angle. It is then important to detect the glare areas in order to
omit them from the neuronal activity detection process. The details of the irrelevant
(glare and outside the cortical) area detection technique is given in Sec. 3.3.

Spatial filtering (SF) and Time filtering (TF) In order to increase the signal-to-noise
ratio, spatial and time filtering described in Sec. 3.4 and Sec. 3.5.1 can be performed
as precomputational steps. In addition these filters will impose the correlations in the
data which are important to be known to adapt the statistical test.
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Time whitening (TW) The residual movement of the cortex after the registration and the
slow hemodynamic response gives rise to time correlations in the measured OIS. For a
correct use of the statistical test, we can perform a time whitening precomputational
step described in Sec. 3.5.2 which aims to decorrelate the data.

Wavelet transform (DWT) Since the hemodynamic response spreads out around the neu-
ronal activity, the OIS signal can be strongly spatially correlated. The spatial extent
of these correlations being not uniform, the sensitivity of the statistical detection tool
must be independent on the size of the neuronal activity. One possible way to tackle
this problem consists in decomposing the spatial components of the data in a multiscale
wavelet basis [11,12]. In this basis the recorded data become uncorrelated and can then
be treated as independent variables in the statistical test (see Sec. 3.6).

As shown in Fig. 7, by combining these steps we implement two computational processes;
the “standard process” in which all the precomputational steps are performed in the spa-
tial basis and the “wavelet process” which includes the wavelet decomposition in order to
decorrelate the data.

Standard process:

Wavelet process:

registration GD SF
TF

or TW GLM
statistical

test

registration GD DWT
TF

or TW GLM denoising IDWT
statistical

test

Figure 7: Diagrammatic representation of the two possible processes (standard process :
process in the spatial basis, wavelet process : process including the wavelet decomposition).
The abbreviations employed in this diagram are GD: glare detection, SF: spatial filtering,
TF: time filtering, TW: time whitening, GLM: general linear model, DWT: discrete wavelet
transform and IDWT: inverse discrete wavelet transform.

In the next sections, we first introduce the linear model and the statistical test that we
perform for the neuronal activity detection. Then we present each precomputational steps
listed above in details following the standard process (in Fig. 7). To illustrate the effect of
each step, an analysis of the statistical test performed on two original (Sec. 2.4) and artificial
(Sec. 2.5) sets of data are presented. Finally we describe the wavelet process (in Fig. 7).

3.1 General linear model (GLM)

The detection of the neuronal activity is based on the well known general linear model [2, 9]
which has been intensively used to interpret fMRI [5]. In this section, we remind the main
idea of this method.

Writing the time evolution of the modelized intensity6 in a vector7 I ∈ MNt(R) (i.e. the
6In this section we omit the position vector r of the measured intensity.
7Ma,b(R) stands for a matrix of size a × b with real coefficients. When b = 1, the b index is omitted (i.e.

Ma(R) stands for a vector of size b).
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ind component Ii = I(ti) with i = 1..Nt), the linear assumption of the GLM is

I = Gβ + e (6)

with G ∈MNt,m(R) is a matrix of rank m with its columns filled by the m regressors of the
model, the vector β ∈ Mm(R) contains the parameters of the model, and e ∈ MNt(R) is
a random vector assumed to follow a multivariate normal distribution8 e ∼ N (0, σ2Ω) with
Ω ∈MNt,Nt(R) is the symmetric and positive defined covariance matrix of e/σ.

The regressors included in G should reproduce the expected features of the modelized
intensity I in Eq. (6). In the following we will consider that the first regressor corresponds
to the stimulation induced OIS intensity (Sec. 2.3) which will be completed by some possible
corrections. For example, as the measurement is relatively long, we have to include regressors
which reproduce the slow variations of the light exposure. These are modelized by a 4th

order polynomial (the related five regressors are t(j) with components t(j)i = tji and j = 0..4,
i = 1..Nt) and have the effect of a high pass filter. In addition, the two main sources of motion
being the heartbeat and the breathing, their related components with frequency νh and νr,
respectively, should be also included in the model. These frequencies are computed from a
Fourier analysis of the time evolution of the global intensity. Therefore, we add the four
regressors s(h,r) and c(h,r) with components s(h,r)

i = sin(2πνh,rti) and c
(h,r)
i = cos(2πνh,rti)

for i = 1..Nt, respectively.
Usually, σ is unknown and we want to infer the parameters β of the model (6) according

to a set of measured OIS data Ĩ. Thus we use the generalized least square estimator of9 β:

β̃ =
(
G′Ω−1G

)−1
G′Ω−1Ĩ with Var(β̃) = σ2

(
G′Ω−1G

)−1
. (7)

and the unbiased estimator of σ2:

σ̃2 =

(
Ĩ−Gβ̃

)′
Ω−1

(
Ĩ−Gβ̃

)
Nt −m

(8)

Hence, the statistical test of the null hypothesis H0 : β1 = 0 (no stimulation related OIS) is
performed on the quantity

T = c′β̃√
σ̃2c′

(
G′Ω−1G

)−1
c

with c′ = [1, 0, · · · , 0︸ ︷︷ ︸
m−1

]. (9)

If the null hypothesis and all the assumptions of the general linear model are verified, T ∼
tNt−m i.e. T follows the Student’s t-distribution with Nt − m degrees of freedom10. The
rejection of the null hypothesis is therefore interpreted in our case as the presence of a neuronal
excitation. The rejection threshold tα of the statistical test is imposed by fixing the probability
α of rejecting the null hypothesis H0 when it is true (type I error11 or false positive) i.e.

rejection when
{
T > tα with P (T > tα) = α (one-tailed test)
|T | > tα with P (|T | > tα) = α (two-tailed test) . (10)

8The density of the multivariate normal distribution is given by the function fX(x) =
exp
(
− x′Ω−1x

2σ2

)
(2π)Nt/2σNt det(Ω)1/2 .

9The symbol “ ′ ” stands for the transposition and “Var” is the variance.
10The density of the Student’s t-distribution with N degrees of freedom is given by the function fX(x) =

Γ(N+1
2 )

√
NπΓ(N2 )

(
1 + x2

N

)−N+1
2

.
11The acceptation of the null hypothesis H0 when it is false is called type II error.
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The statistical threshold tα is computed according to the Stutent’s distribution t-distribution
with Nt − m degrees of freedom. The one-tailed test is performed when only a positive
excitation is expected whereas we use the two-tailed test when the sign of the excitation does
not matter.

Typically α = 0.05 is chosen, but for images with a large number of pixels Np = Nx ·Ny,
we prefer to fix a more conservative threshold fixing the false positive probability of a pixel
over all i.e.12 P (max

r
T (r) > tα) = α with max

r
T (r) is the maximal T value over all the pixels.

Therefore performing the statistical test (10) on each pixel (located in r) separately, α can
be rectified by α→ α/Np in the threshold tα determination (10) according to the Bonferonni
inequality

P (max
r
T (r) > tα) ≤ Np P (T (r) > tα). (11)

As we will see in Sec. 3.4, the Bonferonni correction can be improved when the data are
spatially filtered thanks to the random field theory.

Finally, the time correlations expressed in the covariance matrix Ω which originate from
many unknown effects such as the long time hemodynamic response or the residual cortical
movement (even after the registration) are difficult to estimate. Although we will see in
Sec. 3.5.2 how we can modelize these correlations through a 1st order autoregressive model,
we first assume the simplified case13 Ω = INt i.e. the data are uncorrelated in time.

3.2 Registration

During the acquisition of the data, the observed part of the cortex is free to move principally
owing to the heartbeat and the breathing. Thus, in order to minimize the motion related
noise, a registration precomputational step is necessary. The movement of the brain being
not uniform, it is important to implement a deformable registration process which can take
into account all the possible non-rigid cortical deformations. In this work, we choose the
“demons” algorithm [18] included in the ITK library [10]. As we will see below, once it is
well parametrized, this algorithm is very efficient for matching cortical pictures when they
are slightly deformed.

The main idea of this algorithm is to compute a deformation field d(r) allowing to match
the contour lines of a deformable image m(r + d(r)) with those of a static image s(r) (see
Fig. 8). Following this goal, the deformation field is computed iteratively by considering
the action of local forces “demons” acting on each pixel of the static image and pushing
the deformable image in the direction normal to its contour lines. Starting with an initial
displacement field d0(r), the nnd recursive step for the computation of the displacement field
is given by

d(n)(r) = d(n−1)(r)−
m
(
r + d(n−1)(r)

)
− s(r)

||∇s(r)||2 +
[
m
(
r + d(n−1)(r)

)
− s(r)

]2∇s(r)︸ ︷︷ ︸
=∆d(n)(r)

. (12)

Thereby, the small correction to the displacement field at the n(th) iteration step ∆d(n)(r) is
parallel to ∇s(r) i.e. it is normal to the contour lines of s(r). Furthermore the amplitude
of the correction matches the supposed distance between the two images except close to the
convergence of the algorithm which requires a correction of the denominator for avoiding a

12P ({max
r
T (r) > tα} ∪ {min

r
T (r) < −tα}) = α for a two-tailed test.

13INt ∈MNt,Nt(R) is the identity matrix of size Nt ×Nt.
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divergence of (12) when m− s is small. The figure 8 illustrates the iteration step (12) where
the ∆d(n)(r) are represented by “demons” pushing the contour lines of the deformed image
toward those of the static image. In this work, the static image is chosen as the time average
of the data while the deformable images are all the recored images of the time series.

Additionally, in order to make the registration algorithm more stable and to adapt its
sensitivity to the length scale of the expected cortical deformations, the computed deformation
field is smoothed with a gaussian filter between each iteration step. This is equivalent to
impose an elastic-like behavior to the deformation. The standard deviation σf of the gaussian
filter fixes the length scale below which the deformation field remains smooth. As a result,
the registration algorithm with a too small σf will overestimate the local variations of the
deformation field and then add registration artifact to the detection process. Conversely, some
important local deformations can be neglected when setting a too large σf . These effects will
be analyzed below.

Figure 8: (left): The contour lines (in red) of the time average of the data (grayscale image)
once a gaussian filter with σf = 8 pixels is applied on the data. (right): Sketch of the iteration
step (12). The “objects” are the contour lines in both images and the “demons” are the local
forces on the static image pushing the deformed image. [taken from Ref. [18]]

In order to make the algorithm faster and more robust, we adopt a multi resolution
scheme sketched in Fig. 9. The displacement field is first computed in a coarse scale and
used to initialize the registration algorithm at the next finer level which becomes then faster
to converge. As a result, the number of iterations necessary for the algorithm convergence
decreases from ≈ 30 (for the algorithm without a multi resolution scheme) to . 10 in each
scale (for a 3 scales multi-resolution algorithm, each scale being 2 times finer than the next
one).

As the neuronal activity detection is performed in an intraoperative environment, its com-
putation should be as fast as possible. The registration of each recorded image being the most
time consuming step, it must be parallelized to decrease the total computation time. In this
work, we parallelize each registration using the openMP library [13] on a shared-memory
multiprocessor computer. A performance comparison between the registrations performed
with the openMP parallelization and the parallelization implemented in the ITK library itself
(both with and without multi-resolution algorithm) is shown in Fig. 10. As expected, the
multi-resolution registration algorithm is (≈ 2 times) faster than its single scale implementa-
tion. Moreover, the openMP parallelization divides the computation time almost exactly by
the number of involved processors because it distributes each registration separately on all the
processors. In opposite, the ITK library parallelizing each image registration itself, the ITK
parallelization becomes less efficient when the number of involved processors is important.

To illustrate the effects of the registration process on the computed T values and the
related neuronal activity detection, we show in Figs. 12 and 13 a false color representation
and the histogram of the local T (r) values directly computed after the registration (Fig. 11)
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Figure 9: Conceptual representation of the multi-resolution registration process. [taken from
Ref. [10]]
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Figure 10: Scaling of the registration computation time versus the number of involved proces-
sors. ITK: registration with the ITK parallelization without the multi-resolution algorithm.
ITK+openMP: registration with the openMP parallelization without the multi-resolution
algorithm. ITK multi-resolution: registration with the ITK parallelization and the multi-
resolution algorithm. ITK multi-resolution+openMP: registration with the openMP paral-
lelization and the multi-resolution algorithm.

for several σf on the artificial (Sec. 2.5) and the measured data (Sec. 2.4), respectively.
For the artificial data, as expected the registration algorithm removes a part of the motion

related noise14. This results in a strong increase in the detection sensitivity (increase in true
excitations in Fig. 12). Nevertheless the choice of σf remains crucial. As discussed above,
a too large σf restricts the registration to large scale displacements. Therefore, it can not
correctly detects local movements and leads to an increase in type I errors (see the case
σf = 12 pixels in15 Fig. 12)). In opposite, the registration algorithm can wrongly interpret
the data when σf is too small. For example, some variations of the stimulus related OIS are
corrected during the registration process which decreases the detection sensitivity (see the
case σf = 2 pixels in Fig. 12). Note that the distribution of the T values of the artificial data

14Note that we have compared the difference between the added movement in the artificial data and the
displacement field extracted from the registration algorithm. Both are in good agreement for all the σf shown
in Fig. 12 (comparison not shown here).

15The displacement field applied on the artificial data originates from that computed in the registration of
the original data with σf = 8 pixels.

12



is only slightly modified by the registration process and is very similar to that expected i.e.
the Student’s t-distribution.

registration GD LM
statistical

test

Figure 11: Diagrammatic representation of the computation process restricted to the regis-
tration step. We use the same abbreviations as in Fig. 7.

For the analysis of the measured data, we choose σf = 8 pixels. With this filter size, the
registration corrects the main part of the brain motion without adding too much interpretation
errors. Similarly to the artificial data, the registration decreases the motion related noise.
As a result, the distribution of the T values is broadened and recentered, and the detection
sensitivity is increased (see Fig. 13).

3.3 Glare detection

As briefly mentionned in Sec. 3, in order to a avoid misleading analysis, the glare areas ap-
pearing when the reflected light makes an angle close to the incident light must be eliminated
from the neuronal detection process. These glares are easily detected by analysing the time
series. In this work, we remove from the neuronal activity detection process the following
area:

• the pixels equal or exceeding the maximum intensity of the time averaged data at least
once during all the time evolution

• the pixels with very strong peak intensity i.e. when the variation of intensity between
two time steps exceed 50% of its original value.

For the same reason, the pixels outside the cortical area must be also omitted from the
neuronal activity detection process. These pixels having mainly a small OIS intensity, they
are determined by analyzing the histogram of the time averaged data. This histogram peaks
at low intensity due to the large number of pixels outside the cortical area. We then evaluate
from the upper boundary of the peak an intensity threshold below which the pixels are
considered outside the cortical area.

Finally, the total omitted area is dilated with a small circle with a radius of 2 pixels to
eliminate the glare boundaries

3.4 Spatial filtering

One way to increase the sensitivity of the neuronal activity detection consists in filtering
spatially the recorded pictures once they are registrated. Ideally, if the OIS is spatially
independent, filtering the data will smooth the fluctuations and decrease the noise. As a
result, we expect an increase in the detection sensitivity. Following this idea, we convolve
each recorded picture by a 2D gaussian filter16. The key parameter of this filter is the standard
deviation σs which should be adapted to the neuronal activation size. A too small filter will
be inefficient while a very large filter will broaden the detected area and then reduce the

16A d-dimensionnal gaussian filter with spatial standard deviation σs is given by the function f(r) =

e
− ||r||

2

2σ2
s

(2πσ2
s)d/2

13



test 1

 

 

σ
f
=2

4
6.7
9.3
12

−10 0 10
0

0.1

0.2

0.3

0.4

0.5

σ
f
=2

σ
f
=8

−10 0 10
0

0.1

0.2

0.3

0.4

0.5

σ
f
=8

σ
f
=12

−10 0 10
0

0.1

0.2

0.3

0.4

0.5

σ
f
=12

σ
f
=∞

−10 0 10
0

0.1

0.2

0.3

0.4

0.5

σ
f
=∞

test 2

 

 

σ
f
=2

4
6.7
9.3
12

−10 0 10
0

0.1

0.2

0.3

0.4

0.5

σ
f
=2

σ
f
=8

−10 0 10
0

0.1

0.2

0.3

0.4

0.5

σ
f
=8

σ
f
=12

−10 0 10
0

0.1

0.2

0.3

0.4

0.5

σ
f
=12

σ
f
=∞

−10 0 10
0

0.1

0.2

0.3

0.4

0.5

σ
f
=∞

test 1
σf (pixel) 2 8 12 ∞
true excitations 4 10 13 0
false excitations 0 0 3 0

test 2
σf (pixel) 2 8 12 ∞
true excitations 132 456 622 147
false excitations 2 34 89 38

Figure 12: Test on two artificially computed data (test 1 and 2) (see Sec. 2.5). Each test
includes: (figure above): False color representation of the local T (r) values (Eq. (9)) computed
directly after the registration step (see Fig. 11) for σf = 2, 8, 12 pixels and σf = ∞ (no
registration) when the null hypothesis H0 is rejected according to a one-tailed test (Eq. (10))
with tα = 4.93 (α = 0.05 and considering the Bonferonni correction). The grayscale image
represents the time average of the data and the white area is the omitted irrelevant area
(Sec. 3.3). The pink circles locate the boundaries of the artificially added excitations. (figure
below): Histogram of the T values included in the relevant area. The red curve represents
the expected Student’s t-distribution with 374 degrees of freedom. (table): Number of pixels
rejecting the null hypothesis inside (true excitations) and outside (false excitations) the added
excitations area. The false excitations are equivalent to the errors of type I and 2184 (number
of artificially excited pixels) minus the true excitations correspond to the errors of type II.

spatial resolution by a factor of approximately 2
√

2 log 2σs (the full width at half maximum
(FWHM) of the filter).

In addition, when a spatial filtering is performed, the spatial correlations are normalized
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Figure 13: Same results as Fig. 12 but computed with the measured OIS (see Sec. 2.4) for
σf = 8 pixels and σf =∞ (no registration) on two different patients (original 1 and 2) using
a two-tailed test with tα = 5.07.

by the filter size and become stronger. In this case, the Bonferonni correction (11) of the
detection threshold can become too conservative. A less restrictive statistical test results from
the random field theory [1]. It has been demonstrated [21, 22, 25] that the tail probability
P (max

r
T (r) > tα) of a smoothed random field of Student’s variables T (r) (with N degrees of

freedom) can be approximated by

P (max
r
T (r) > tα) ≈

Γ
(
N+1

2

)
Np

2(2π)3/2
(
N
2

)1/2
Γ
(
N
2

)
σ2
s

(
1 + t2α

N

)− 1
2(N−1)

. (13)

This expression allows us to compute the threshold tα for a given probability α. The latter is
compared with the Bonferonni threshold in Fig. 14. It shows that for small σs . 2 pixels, the
Bonferonni threshold is less conservative than that extracted from the random field theory.
On the contrary, for larger σs & 2 pixels the Bonferonni threshold is more conservative. In
the following, we will take the optimal statistical threshold chosen as the smaller between the
Bonferonni or the random field theory.

To show the effects of the spatial filtering, we present in Figs. 16 and 17, a false color
representation and the histogram of the local T (r) values directly computed after the spatial
filtering (see the restricted process in Fig. 15)) for several σs on the artificial (Sec. 2.5) and the
measured data (Sec. 2.4). As expected, the larger the filter is, the more sensitive the neuronal
detection is (increase in true excitations with σs in the artificial data (Fig. 16)). Nevertheless,
the detected area becomes too much broadened when the filter is large (increase in type I
errors with σs in the artificial data (Fig. 16)). In addition, when the neighbor pixels are
correlated in time, the spatial filter can increase these time correlations (see Sec. 3.5.2) and
the temporal decorrelation assumption (Ω = INt) considered up to now becomes strongly
violated. As a result the histogram of the T values deviates from the expected Student’s
t-distribution. This effect slightly present in the artificial data becomes much stronger when
considering the original data which have intrinsically stronger time correlations (see Fig. 16).
We will discuss in Sec. 3.5 how these time correlations can be taken into account in the
detection process.

In the following, we will use σs = 2 pixels which is a compromise between the sensitivity
and the type I error increase. Nevertheless this choice is relatively flexible, because it depends
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Figure 14: Statistical threshold tα versus the standard deviation σs in (pixel) of the spatial
filter computed for a one-tailed test with significance level α = 0.05 and considering pictures
with Np = 248× 329 pixels (half resolution of the camera CCD (see Sec. 2.4)). The threshold
computed from the Bonferonni corrected α → α/Np and the random field theory (RFT) are
shown for the Student’s t-statistics with N = 374 degrees of freedom (same as for all the
statistical tests shown in this report) and N →∞ (normal statistics).

mainly on the size of the expected neuronal activation area which is usually not known in
advance.

registration GD SF LM
statistical

test

Figure 15: Diagrammatic representation of the computation process restricted to the regis-
tration followed by the spatial filtering. We use the same abbreviations as in Fig. 7.

3.5 Time corrections

As discussed in Secs. 3 and 3.4, the time correlations can be strong in the measured data.
These correlations originate from the slow hemodynamic response, the residual brain motion
(after registration) or the not exactly modelized stimulus related OIS (discussed in Sec. 2.3).
But, for a correct statistical analysis presented in Sec. 3.1 we should either have uncorrelated
data, i.e. Ω = INt (as assumed in the previous section), or compute a good approximation of
the covariance matrix Ω.

In the following, we will first describe a method which consists in filtering in time the
data to impose the time correlations Ω. In opposite, the second presented technique uses
an autoregressive process to modelize the time correlations Ω. In both techniques these
correlations are assumed equal in all the pixels of the recorded images.

3.5.1 Time filtering

As proposed in Ref. [23], filtering the data in time is a way of fixing the covariance matrix
Ω while decreasing the noise. To perform this technique, we convolve the time evolution of
the data with a gaussian filter. Fixing the standard deviation σt, the time filtering cut all
the noise with higher frequencies than approximatively

√
ln 2/(

√
2πσt) (the half FWHM of
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σs (pixel) 0 1 2 4
true excitations 10 611 1584 2028
false excitations 0 2 103 808

test 2
σs (pixel) 0 1 2 4
true excitations 456 1561 1932 2109
false excitations 34 307 1152 4136

Figure 16: Test on two artificially computed data (test 1 and 2) (see Sec. 2.5). Each test
includes: (figure above): False color representation of the local T (r) values (Eq. (9)) computed
directly after the spatial filtering step (see Fig. 15) with σs = 0 (no spatial filtering) and σs =
1, 2, 4 pixels when the null hypothesis H0 is rejected according to a one-tailed test (Eq. (10))
with tα = 4.93, 4.93, 4.77, 4.44 (for σs = 0, 1, 2, 4 pixel) (α = 0.05 and considering the optimal
statistical criteria). The grayscale image represents the time average of the data and the
white area is the omitted irrelevant area (Sec. 3.3). The pink circles locate the boundaries
of the artificially added excitations. (figure below): Histogram of the T values included
in the relevant area. The red curve represents the expected Student’s t-distribution with
374 degrees of freedom. (table): Number of pixels rejecting the null hypothesis inside (true
excitations) and outside (false excitations) the added excitations area. The false excitations
are equivalent to the errors of type I and 2184 (number of artificially excited pixels) minus
the true excitations correspond to the errors of type II.

the Fourier transform of the gaussian filter17). Thus, if we want to keep into account the

17A gaussian filter f(t) = e

− t2
2σ2
t

(2π)1/2σt
has a Fourier transform f̂(ν) = e

− ν2
2σ2
ν

(2π)1/2σν
with σν = 1

2πσt .
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Figure 17: Same results as Fig. 16 but computed with the measured OIS (see Sec. 2.4) for
σs = 0 (no spatial filtering) and σs = 2 pixels on two different patients (original 1 and 2)
using a two-tailed test with tα = 5.07, 4.93 (for σs = 0, 2 pixel).

details of the hemodynamic response, we must keep σt . 1 s (see Fig. 4). Nevertheless, in
order to assume Ω fixed by the time filtering, σt must be much larger than the original time
correlations of the measured OIS.

Once the data are filtered, we have to adapt the statistical test shown in Sec. 3.1 in order
to take into account the imposed correlations. In a matrix form, the time filtering is just a
matrix multiplication18 and Eq. (6) becomes

KI = KGβ + e (14)

with K the matrix associate to the gaussian filter and e ∼ N (0, σ2Ω) with Ω ≈ KK′ (when
the temporal correlations of the original OIS are neglected). Instead of using the (best)
generalized least square estimator (7) of β which requires a very good knowledge of Ω for being
inverted (it is not the case here), we follow Ref. [23] and consider the unbiased estimator19

β̃tf =
(
G?′G?

)−1
G?′KĨ with Var(β̃tf ) = σ2

(
G?′G?

)−1
G?′KK′G?

(
G?′G?

)−1
(15)

and the related unbiased estimator of20 σ2:

σ̃2
tf =

(
KĨ−G?β̃tf

)′ (
KĨ−G?β̃tf

)
Tr(RKK′) (16)

which are computed directly with the filtered data KĨ. Hence, the statistical test is performed
on the quantity

Ttf =
c′β̃tf√

σ̃2
tfc′ (G?′G?)−1 G?′KK′G? (G?′G?)−1 c

. (17)

18The convolution of a discrete data set fi = f(ti) with a filter ki = k(ti) with i = 1..Nt can be written
in a matrix form i.e. Kf with Kij = k(ti−j) (in this work we have considered periodic boundaries, i.e.
k(ti−j) = k(tNt+i−j) if i ≤ j).

19G? stands for KG.
20“Tr” stands for the trace and R = INt −G?

(
G?′G?

)−1 G?′.
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Because the denominator of Ttf does not follow exactly a Chi-squared distribution and is
not totally independent from the numerator, we can not directly perform a statistical test
on Ttf based on the Stutent’s t-distribution. To address this issue, we use the Satterthwaite
approximation which consists in approximating the denominator of (17) by a Chi-squared
distribution and evaluate its degrees of freedom from the two first moments of σ̃2

tf i.e.

Ntf = Tr(RKK′)2

Tr(RKK′RKK′) . (18)

In this approximation, Ttf is assumed to follow a Stutent’s t-distribution with Ntf degrees of
freedom and we can apply the statistical tests described in Sec. 3.1 on Ttf instead of T . As
we will see below, the longer σt is the lower Ntf is. Therefore, the statistical test can become
more conservative when we apply a time filtering on the data.

The result of the time filtering is illustrated in Figs. 18 and 19 which show a false color
representation and the histogram of the local Ttf (r) values computed after the full process
(Fig. 11) with σt = 0 (no time filtering) and σt = 1 s for the artificial (Sec. 2.5) and the
measured data (Sec. 2.4). As expected, thanks to the time filtering, the distribution of the Ttf
values is renormalized. Nevertheless, it can deviate from the perfect Student’s t-distribution
since the denominator of (17) is not exactly a Chi-squared distribution. As a result, the
number of type I errors decreases remarkably while the lost of sensitivity becomes critical. In
particular, all the relevant detected excitations in the experimental data vanish (see Fig. 19).
A finer tuning of the parameter σt could probably solve this issue. Nevertheless, in an ideal
computation process all the parameters should be self-determined. It is why we present in
the next section an other approach free of tunable parameters.

3.5.2 Time whitening

In opposite to the time filtering approach presented in the last section which imposes the time
correlations to the data, the time whitening technique evaluates these correlations through
an autoregressive model of order 1 [2, 24]. This model assumes that the error in the linear
model (6) between two recorded images (i.e. e(ti) and e(ti−1)) are correlated such that

e(ti) = ρe(ti−1) + u(ti) (19)

with u(ti) are independent random variables with Var(u(ti)) = σ2. Within this model the
components of the time correlation matrix Ω are Ωij = ρ−|i−j|/(1− ρ2) and can be evaluated
though the least square estimator of ρ:

ρ̃ =
∑
i ẽ(ti)ẽ(ti−1)∑
i ẽ(ti−1)2 with ẽ = Ĩ−Gβ̃. (20)

Once ρ and Ω are estimated, the general linear model (Sec. 3.1) is applied for the neuronal
activation detection. Instead of computing21 Ω−1 and evaluate the T value according to
Eqs. (7), (8) and (9), we apply the filter Ω−1/2 with

Ω−1/2
ij =

{
1 if i = j
−ρ if i− j = 1 and Ω−1/2′Ω−1/2 = Ω−1 (21)

on both Ĩ and G (i.e. Ĩ → Ω−1/2Ĩ and G → Ω−1/2G). This filtering decorrelates the data.
The statistical test (9) using these corrected data and regressors is therefore performed by

21Considering boundary conditions ti = ti−Nt if i > Nt, Ω−1
ij =

{
1 if i = j
−ρ if |i− j| = 1 .
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Figure 18: Test on two artificially computed data (test 1 and 2) (see Sec. 2.5). Each test
includes: (figure above): False color representation of the local Ttf (r) values (Eq. (9)) com-
puted after the full detection process (see Fig. 7 with a time filtering) with σt = 0 (no time
filtering) and σt = 1 s when the null hypothesis H0 is rejected according to a one-tailed test
(Eq. (10)) with tα = 4.77, 5.13 (for σt = 0, 2 s, α = 0.05 and considering an optimal statistical
criteria). The grayscale image represents the time average of the data and the white area is
the omitted irrelevant area (Sec. 3.3). The pink circles locate the boundaries of the artificially
added excitations. (figure below): Histogram of the Ttf values included in the relevant area.
The red curve represents the expected Student’s t-distribution with 374 and 73.3 degrees of
freedom (for σt = 0 and 2 s). (table): Number of pixels rejecting the null hypothesis inside
(true excitations) and outside (false excitations) the added excitations area. The false exci-
tations are equivalent to the errors of type I and 2184 (number of artificially excited pixels)
minus the true excitations correspond to the errors of type II.
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Figure 19: Same results as Fig. 18 but computed with the measured OIS (see Sec. 2.4) for
σt = 0 (no time filtering) and σt = 2 s on two different patients (original 1 and 2) using a
two-tailed test with tα = 4.93, 5.33 (for σt = 0, 2 s).
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assuming that Ω = INt . As shown in Fig. 20, the Fourier transform of the filter Ω−1/2

(Ω̂−1/2(ν) = 1−ρei2πν) is a bandpass filter which becomes stronger when the correlations are
important (ρ . 1). As the frequency domain of the expected stimulation related OIS stands
mainly in a low frequency band (see Fig. 4), the more correlated are the original data, the
stronger decreases the whitened stimulation related OIS amplitude.
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Figure 20: Spectral density of the time whitening filter |Ω̂−1/2|(ν) for several values of ρ.

To investigate the spatial dependence of ρ, we evaluate ρ̃ independently on all the pixels
(located in r) of the recorded images. A grayscale representation of ρ̃(r) (computed locally)
is shown on Figs. 21 and 22 for the artificial (Sec. 2.5) and the measured data (Sec. 2.4),
respectively. Although the artificial data underestimate the time and spatial correlations of
the OIS22, they show, in agreement with the measured data, that the correlations are stronger
where the excitations are expected. This is principally due to the fact that the stimulation
related OIS are not perfectly modelized by the first regressor in G which leads to an artificial
increase in the time correlations and ρ where these stimulation related excitations are present.
A local correction of the correlations by computing locally Ω−1/2 would then decrease the
sensitivity of the statistical test. It is why we estimate ρ globally i.e. by averaging the two
terms of the ratio (20) on all the relevant pixels (Sec. 3.3) of the recorded images. By this
way, the statistical fluctuations of ρ are minimized. Note also that ρ is locally increased by
the spatial filtering when the spatial and time correlations of the measured OIS are both
originally strong.

The effect of the time whitening is illustrated on Figs. 23 and 24 which show a false color
representation and the histogram of the local T (r) values computed after the full process
(Fig. 11) with and without time filtering for the artificial (Sec. 2.5) and the measured data
(Sec. 2.4), respectively. As discussed above, the artificial data being less correlated than the
measured data, they show a smaller ρ which renormalizes the T value according to the ex-
pected Student’s t-distribution. Thanks to the time whitening, the type I errors drastically
decrease whereas the detection sensitivity is almost not modified by the time whitening. In
opposite to the time filtering discussed in Sec. 3.5.1, the time whitening adapts the filter
applied on the data according to the data correlations and is then more efficient. In the
measured data, the time correlations are very strong, the resulting time whitening renormal-
izes then strongly the distribution of the measured T values which decreases the detection

22The origin of the correlations in the artificial data are both the motion, and the model of the excitations
used in the detection process which is different from the artificially added excitations based on the linear
response (Sec. 2.3).
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Figure 21: (left): Grayscale representation of the local estimation of ρ(r) computed on the
two artificial data sets (test 1 and 2) (see Sec. 2.5) after the spatial filtering (in the process
shown in Fig. 7). The pink circles locate the artificially added excitations. (right): Histogram
of the local ρ(r) located in the relevant area (Sec. 3.3).
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Figure 22: Same results as Fig. 21 but computed with the measured OIS (see Sec. 2.4) on
two different patients (original 1 and 2).

sensitivity. Nevertheless, unlike the time filtering, small relevant detection area remains after
the time whitening (see Fig. 24).

3.6 Wavelet

The spatial correlations of the data are problematic for a correct statistical detection of
the excitations based on the assumption of independent variables. Although the spatial
filtering discussed in Sec. 3.4 tends to uniform these correlations and adapts the statistical
test according to that, this technique yields to an increase in the time correlations and then
a decrease of the detection sensitivity. In addition, as the expanse of the neuronal excitation
remains unknown, the choice of the filter size is arbitrary and not necessary adapted to all
the stimulated cortical area.

An alternative way for dealing with these spatial correlations is to change the basis for
representing the data and choose a multiscale representation which minimizes the number of
correlated time series. As proposed in Ref. [19] for the analysis of fMRI data, the wavelet
decomposition [11, 12] provides such a remarkable orthonormal basis. In this basis the local
OIS temporal series are formulated as

I(r) =
∑
k

Iw(k) ψk(r) (22)

where ψk(r) is the knd vector of the wavelet basis and Iw(k) is the related OIS temporal
series. The multiscale structure of the basis ψk allows us to treat equitably the different sizes
of the neuronal excitations such that the time series decomposed in this basis (Iw(k)) are
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Figure 23: Test on two artificially computed data (test 1 and 2) (see Sec. 2.5). Each test
includes: (figure above): False color representation of the local T (r) values (Eq. (9)) computed
after the full detection process (see Fig. 7) with or without time whitening when the null
hypothesis H0 is rejected according to a one-tailed test (Eq. (10)) with tα = 4.77 (α = 0.05
and considering an optimal statistical criteria). The grayscale image represents the time
average of the data and the white area is the omitted irrelevant area (Sec. 3.3). The pink
circles are the boundaries of the artificially added excitations. (figure below): Histogram of
the T values included in the relevant area. The red curve represents the expected Student’s
t-distribution with 374 degrees of freedom. (table): Number of pixels rejecting the null
hypothesis inside (true excitations) and outside (false excitations) the added excitations area.
The false excitations are equivalent to the errors of type I and 2184 (number of artificially
excited pixels) minus the true excitations correspond to the errors of type II.
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Figure 24: Same results as Fig. 23 but computed with the measured OIS (see Sec. 2.4) with
and without time whitening on two different patients (original 1 and 2) using a two-tailed
test with tα = 4.93.
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decorrelated. As represented in Fig. 25, the wavelet decomposition has a pyramidal structure.
The data are filtered spatially with complementary filters to separate the vertical, horizontal
and uniform high frequencies from the low frequency components. This decomposition is then
reiterate recursively on the low frequency components. Between each level of the wavelet
decomposition, the spatial resolution of the data is divided by two. As illustrate in Fig. 26
on the time average of the OIS, this decomposition generates coefficients which represent the
details of the data at different level of resolution. Therefore, a broad neuronal excitation is
decomposed in a small number of wavelet coefficients Iw(k) as for a tight excitation both in
the corresponding level of resolution. Thus in opposite to the spatial description, in which
the time series are expressed in a local basis and have then correlations mainly related the
size of the neuronal activity, only few wavelet coefficients Iw(k) are correlated with each
others. The wavelet decomposition provides then quasi independent variables for performing
the statistical test (Sec. 3.1).
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Figure 25: Pyramidal construction of the discrete wavelet transform. D1
j f , D2

j f , D3
j f are the

vertical, horizontal and uniform high frequency wavelet coefficients (spatial details) at the
level j (with resolution 2−j) of the function f . Ajf are the low frequency wavelet coefficients
(spatial average) at the level j of f .

Spatial coefficients Wavelet coefficients

Figure 26: Time average of the OIS displayed in a spatial basis (left figure) and in a wavelet
basis (right figure) down to 2 levels. The wavelet coefficients are represented as described in
Fig. 25.
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Nevertheless, in order to get an interpretation of the statistical test in the spatial basis,
the detection process on the wavelet time series Iw(k) must be slightly modified from the
“standard” process performed on the spatial coefficients and sketched in Fig. 7. Therefore,
we follow Ref. [19] and split the statistical detection in two parts.

First, a denoising step based on the statistical significance of the wavelet coefficients is
performed on the relevant first regressor uw(k) = c′βw(k) where βw(k) stands for the model
parameters computed by (7) (or (15) after the time filtering) on the knd wavelet coefficients
(Iw(k)) of the OIS time series. Only the wavelet coefficients with |Tw(k)| > τw are kept with
Tw(k) stands for the T value computed by (9) (or (17) after the time filtering) on the knd

wavelet components Iw(k) and τw is the wavelet threshold discussed below. Therefore, the
denoised first regressor parameter in the spatial domain u(r) becomes

u(r) =
∑
k

H(|Tw(k)| − τw) uw(k)ψk(r). (23)

with H(x) is the Heaviside function.
Secondly, the statistical detection is performed in the spatial domain on the renormalized

denoised first model parameter u(r)/Λ(r) i.e.

rejection when
{
u(r)/Λ(r) > τs (one-tailed test)
|u(r)|/Λ(r) > τs (two-tailed test) . (24)

The spatial renormalization factor Λ(r) =
∑
k σ̃w(k)|ψk(r)| allows one to keep a spatial thresh-

old τs constant although the sensitivity of the test changes after the wavelet denoising from
pixel to pixel (σ̃w(k) stands for the error estimation computed by (8) (or (16) after the time
filtering) on the knd wavelet time series Iw(k)). The spatial and wavelet thresholds (τs and
τw respectively) are determined by minimizing the difference between the denoised and the
rough first regressor parameter while fixing the type I error (α/Np considering the Bonferonni
correction) in the spatial domain (see Ref. [19] for the technical details). Figure 27 shows
the α dependence of these thresholds. Both τs and τw have a monotonic behavior with α.
Although τw decreases with α (as tα when a “standard” statistical test based on a Student’s
distribution is performed), ts increases slightly with α.
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Figure 27: Spatial and wavelet thresholds (τs and τw respectively) versus α computed by
considering that Tw(k) follows a Student’s t-distribution with N = 374 degrees of freedom
(blue curves) and N →∞ equivalent to a normal distribution (red curves).

To compare the “wavelet” detection process with the “standard” method both sketched in
Fig. 7, we show in Figs. 28 (artificial data) and 30 (measured data) a false color representation
of T (r) and u(r)/Λ(r) and the histogram of the T (r) and Tw(k) values, respectively. In these
examples, we perform the wavelet decomposition using the Daubechies wavelets of order 4
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down to 3 levels and a time whitening step to decorrelate the wavelet time series. The results
on the artificial data show that the wavelet process gives similar detection sensitivity than
the “standard” method. Although the false detection errors are increased, this technique is
free of tunable parameters (such as the size of the spatial filter σs in the “standard” method)
and the time series are better decorrelated. As a result, the histogram of the Tw values fits
better with the expected Student’s t-distribution23 and the autoregressive parameter ρ of
the wavelet time series Iw(k) is much smaller (Figs. 29 and 31) compared to that computed
with the spatial time series I(r) (Figs. 21 and 22). In addition, after the time whitening,
the detected areas in the measured OIS which almost vanish in the full standard process (see
Sec. 3.5.2) become more visible when the wavelet process is applied (see Fig. 30).
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Figure 28: Test on two artificially computed data (test 1 and 2) (see Sec. 2.5). Each test in-
cludes: (figure above): False color representation of the local T (r) (no wavelet) and u(r)/Λ(r)
values (wavelet) computed after the full “standard” and “wavelet” detection processes shown
in Fig. 7 when the null hypothesis H0 is rejected according to a one-tailed test. The grayscale
image represents the time average of the data and the white area is the omitted irrelevant area
(Sec. 3.3). The pink circles are the boundaries of the artificially added excitations. (figure
below): Histogram of the T (r) (in the relevant area) and Tw(k) values, for the standard and
wavelet process, respectively. The red curve represents the expected Student’s t-distribution
with 374 degrees of freedom. (table): Number of pixels rejecting the null hypothesis inside
(true excitations) and outside (false excitations) the added excitations area. The false exci-
tations are equivalent to the errors of type I and 2184 (number of artificially excited pixels)
minus the true excitations correspond to the errors of type II.

Two improvements of this wavelet method are given in Ref. [20] i.e. the bias correction
and the shift invariance of the inverse wavelet reconstruction. Nevertheless, as these do not
give significant improvement of the detection sensitivity and the false detection minimization
we do not show the results here.

23The bias in the estimation of ρ (Eq. 20) or the limit of validity of the autoregressive model to describe the
noise in the temporal series can lead to an over renormalization of the Tw distribution (see Fig. 30).
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Figure 29: Histogram of the ρ(k) computed on the wavelet time series Iw(k) of the two
artificial data sets (test 1 and 2).
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Figure 30: Same results as Fig. 28 but computed with the measured OIS (see Sec. 2.4) on
two different patients (original 1 and 2) using a two-tailed test.
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Figure 31: Histogram of the ρ computed on the wavelet time series Iw(k) of the two measured
OIS (original 1 and 2).

4 Software description
Based on the methods described in Sec. 3, we implemented a user interface “OIS detection”
in Matlab which allows to compute and visualize the detected area. The graphical interface
is shown in Fig. 32 with the explanations of its visual components.

This tool allows to read the recorded images from the camera CCD written in a for-
mat .sif and the registrated time series saved in a format .mha after the time consuming
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Figure 32: Main window of the OIS detection tool. The toolbar includes the “File” and
“Parameters” menus for the file opening and the parameters setting, respectively. The file
name of the processed data as well as the computed heartbeat and respiration rate are dis-
played on the bottom of the window. The white areas correspond to the irrelevant areas (see
Sec. 3.3) and the colored pixels are the statistically relevant area. The color bar shows the
color scale of the tested quantities T (r) or Ttf (r) (Eq. (9) or (17)) and u(r)/Λ(r) (Eq. (23))
above the statistical threshold tα and τs for the “standard” and “wavelet” detection process,
respectively.

registration process performed on the raw data set.
The initialization parameters of the OIS detection tool for the data acquisition protocol

and the computation process discussed in Secs. 2.4 and 3 are set in the files acquisition_
parameters.txt and detection_parameters.txt, respectively. The most important pa-
rameters are also accessible directly in the programm through the “paramaters” menu in the
toolbar and are summarized in the two next sections. Note that it is necessary to push the
button “save” in the parameter setting windows in order to actualize the internal variables of
the software before starting the detection process.

4.1 Acquisition parameters

For a correct use of the OIS detection tool, it is necessary to set precisely the parameters of
the modelized OIS entering in the linear model (see Sec. 3.1). These parameters depend on
the protocol and the type of the detected neuronal activity we focus on. They are summarized
in the following list:

delta t acquisition: the elapsed time in (s) between the image acquisitions.

protocol: the acquisition protocol depends on the type of detected neuronal excitations:

stimulation: the detection of the periodic stimulation related excitations discussed in
Sec. 2.4 has to be set with the parameters:
activation duration: the duration of the stimulation in (s).
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rest duration: the duration of the rest following the stimulation in (s).
number of blocks: the number of blocks (activation + rest) in the recorded data.

seizure: the detection of an epilepsy requires to record continuously a rest and a seizure
period. Once parametrized, only the data included in these periods are kept for
the analysis. If the rest period precedes the seizure, the following parameters are
necessary:
rest start: the start of the rest period in (s) measured from the beginning of the

data acquisition.
rest end: the end of the rest (or onset of the seizure) in (s) measured from the

beginning of the data acquisition.
seizure end: the end of the seizure in (s) measured from the beginning of the

data acquisition.
In opposite, if the seizure precedes the rest period:
seizure start: the onset of the seizure in (s) measured from the beginning of the

data acquisition.
seizure end: the end of the seizure (or start of the rest period) in (s) measured

from the beginning of the data acquisition.
rest end: the end of the rest period in (s) measured from the beginning of the

data acquisition.

4.2 Detection parameters

The main parameters of the detection methods discussed in Sec. 3 and accessible in the user
interface are summarized in the following list:

size reduction: the reduction of the data size by two in the two spatial directions (see
Sec. 2.4).

registration: the registration of the raw images with the average of the time series (see
Sec. 3.2). Once registrated, the data are saved.

wavelets: the choice of the detection process (with or without wavelet decomposition as
discussed in Sec. 3). If the “wavelet” process is chosen the two improvements of the
method discussed in Ref. [20] are possible:

invariance correction: this correction intends to recover the translation invariance of
the detection process while the wavelet detection process discussed in Sec. 3.6 is
not translational invariant.

bias correction: this correction intends to correct the artifacts of the wavelet recon-
struction.

spatial filter: the spatial filtering requires the setting of the standard deviation σs in (pixel)
of the gaussian filter (see Sec. 3.4).

time filter: the time filtering requires the setting of the standard deviation σt in (s) of the
gaussian filter (see Sec. 3.5.1).

time whitening: the time whitening discussed in Sec. 3.5.2.
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statistical test: the choice between a one- or two-tailed statistical test (see Sec. 3.1) for the
activation detection.

significance level: the probability of assumed type I errors which set the threshold of the
statistical test and the wavelet denoising (see Secs. 3.1 and 3.6).

5 Conclusions
In this report, we presented the statistical tool “OIS detection” that we have implemented for
the analysis of OIS and the detection of neuronal excitations. By testing different algorithms
we were able to optimize the detection sensitivity of stimulation related OIS and improve the
computational time for applications in an intraoperative environment.

We showed that a registration step before performing the statistical detection was nec-
essary for correcting the cortical movement. In addition, to make the calculation time rea-
sonable during the surgery, we propose a parallelized version of this precomputational step.
Furthermore, in order to deal with the correlations and to reduce the noise in the data we
included in the detection process a wavelet decomposition and a time whitening steps. These
techniques intend to decorrelate the data instead of imposing the correlations by a standard
filtering and provide then a more sensitive detection. Moreover, these techniques do not need
tunable parameters which make the detection process more robust. As a preliminary test for
the validation of our detection tool, we checked that the detected area in the data “original
2” are in agreement with the direct electric cortical stimulation.

Although our detection process is already quite efficient, several improvements of the
statistical tool remain possible. For example, in order to correctly detect the stimulation or
the epilepsy related OIS a precise model of the expected signal is required. In this work,
because the details of the measured OIS in humans is only poorly known, we simply used
the electric stimulation or an Heaviside function as model. A better understanding of these
signals in humans is then strongly required in order to improve our modelized OIS and then
the quality of the detection.

To decorrelate in time the data, we assumed in the time whitening step that these cor-
relations follow an autoregressive model of order 1. Although this model adapts the effect
of the time whitening to the measured data, a more detailed model such as an higher order
autoregressive model [6] or considering more complex correlation structures could improve
the decorrelation step and therefore the detection process. In addition, for stability reasons
and due to the chosen OIS model discussed above (see Sec. 3.5.2), the time correlations are
considered globally in this work. It could be interesting to improve the detection tool by
computing locally the parameters of the temporal correlation model such as in Ref. [24].
The estimation of the correlation parameters could also be improved by using an expectation
maximization (EM) algorithm discussed in [8].

From an experimental point of view, for a better stability of the light environment and in
order to minimize the glares in the recorded images, a circular light has been build to illumi-
nate the cortical area with a larger incident angle during the measurements. A more diffuse
illumination could be also set by adding a frosted glass below the light source. Furthermore,
to minimize the cortical movement, it is planned to put piece of glass on the top of the cortex
during the image recording. Nevertheless, for safety reasons the use of this glass should be
avoided for the validation of the OIS technique on humans in an intraoperative environment.
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